Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
JTO Clin Res Rep ; 5(4): 100668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646155

RESUMO

Introduction: Osimertinib is a standard treatment for patients with EGFR-mutant NSCLC. Although some osimertinib resistance mechanisms have been identified, nearly 50% of the mechanisms remain to be elucidated. This study was aimed at identifying non-genetic mechanisms underlying osimertinib resistance. Methods: We established two osimertinib-resistant cell lines from EGFR mutation-positive PC-9 and HCC827 NSCLC cell lines (PC-9OR and HCC827OR, respectively) using a stepwise method. We compared the phosphoproteomic profiles of the osimertinib-resistant and parental cells using mass spectrometry. Upstream kinases were identified using the application Kinase Enrichment Analysis version 3. Results: Phosphoproteomic analysis revealed 80 phosphorylation sites that were mutually up-regulated in PC-9OR and HCC827OR cells. The Kinase Enrichment Analysis version 3 analysis identified focal adhesion kinase (FAK) and proto-oncogene tyrosine-protein kinase Src (Src) as upstream kinases of these up-regulated phosphoproteins. The small-interfering RNA-mediated knockdown of FAK reduced Src phosphorylation and that of Src reduced FAK phosphorylation in both cell lines. Furthermore, FAK- or Src-specific small-interfering RNA treatments restored EGFR phosphorylation in PC-9OR and HCC827OR cells. The combination of FAK and Src inhibitors inhibited PC-9OR and HCC827OR cell proliferation in vitro and suppressed tumor growth in a xenograft mouse model. Immunohistochemistry of tumors from patients with EGFR-mutant NSCLC suggested that phosphorylated FAK and Src are involved in initial and acquired resistance to osimertinib. Conclusions: Phosphoproteomic analysis may help elucidate the mechanisms of resistance to molecular-targeted therapies in lung cancer. Mutual phosphorylation of FAK and Src is involved in osimertinib resistance. Thus, FAK and Src inhibition may be novel treatment strategies for osimertinib-resistant NSCLC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38551536

RESUMO

BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.

3.
J Neurooncol ; 166(2): 273-282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227143

RESUMO

PURPOSE: Liquid biopsy of cyst fluid in brain tumors has not been extensively studied to date. The present study was performed to see whether diagnostic genetic alterations found in brain tumor tissue DNA could also be detected in cell-free DNA (cfDNA) of cyst fluid in cystic brain tumors. METHODS: Cyst fluid was obtained from 22 patients undergoing surgery for a cystic brain tumor with confirmed genetic alterations in tumor DNA. Pathological diagnoses based on WHO 2021 classification and diagnostic alterations in the tumor DNA, such as IDH1 R132H and TERT promoter mutation for oligodendrogliomas, were detected by Sanger sequencing. The same alterations were analyzed by both droplet digital PCR (ddPCR) and Sanger sequencing in cyst fluid cfDNA. Additionally, multiplex ligation-dependent probe amplification (MLPA) assays were performed to assess 1p/19q status, presence of CDKN2A loss, PTEN loss and EGFR amplification, to assess whether differentiating between astrocytomas and oligodendrogliomas and grading is possible from cyst fluid cfDNA. RESULTS: Twenty-five genetic alterations were found in 22 tumor samples. All (100%) alterations were detected in cyst fluid cfDNA by ddPCR. Twenty of the 25 (80%) alterations were also detected by Sanger sequencing of cyst fluid cfDNA. Variant allele frequency (VAF) in cyst fluid cfDNA was comparable to that of tumor DNA (R = 0.62, Pearson's correlation). MLPA was feasible in 11 out of 17 (65%) diffuse gliomas, with close correlation of results between tumor DNA and cyst fluid cfDNA. CONCLUSION: Cell-free DNA obtained from cyst fluid in cystic brain tumors is a reliable alternative to tumor DNA when diagnosing brain tumors.


Assuntos
Neoplasias Encefálicas , Ácidos Nucleicos Livres , Oligodendroglioma , Humanos , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Oligodendroglioma/patologia , Líquido Cístico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Mutação , Reação em Cadeia da Polimerase Multiplex , DNA
4.
Sci Rep ; 14(1): 1315, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225283

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by severe lung fibrosis and a poor prognosis. Although the biomolecules related to IPF have been extensively studied, molecular mechanisms of the pathogenesis and their association with serum biomarkers and clinical findings have not been fully elucidated. We constructed a Bayesian network using multimodal data consisting of a proteome dataset from serum extracellular vesicles, laboratory examinations, and clinical findings from 206 patients with IPF and 36 controls. Differential protein expression analysis was also performed by edgeR and incorporated into the constructed network. We have successfully visualized the relationship between biomolecules and clinical findings with this approach. The IPF-specific network included modules associated with TGF-ß signaling (TGFB1 and LRC32), fibrosis-related (A2MG and PZP), myofibroblast and inflammation (LRP1 and ITIH4), complement-related (SAA1 and SAA2), as well as serum markers, and clinical symptoms (KL-6, SP-D and fine crackles). Notably, it identified SAA2 associated with lymphocyte counts and PSPB connected with the serum markers KL-6 and SP-D, along with fine crackles as clinical manifestations. These results contribute to the elucidation of the pathogenesis of IPF and potential therapeutic targets.


Assuntos
Fibrose Pulmonar Idiopática , Proteoma , Humanos , Proteína D Associada a Surfactante Pulmonar , Teorema de Bayes , Sons Respiratórios , Fibrose Pulmonar Idiopática/patologia , Biomarcadores
5.
J Phys Chem A ; 128(3): 611-617, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38227306

RESUMO

Carbon (C) K-edge X-ray absorption spectra for firefly luciferin were measured and assigned using time-dependent density functional theoretical calculations for luciferin anion and dianion to elucidate the effect of hydroxy-group deprotonation. It was found that the C K-edge spectra for luciferin had four characteristic peaks. The effect of deprotonation of the hydroxy group appears in the energy difference of the first and second peaks of these spectra. This energy difference is 1.0 eV at pH 7 and 2.3 eV at pH 10. The deprotonation of the hydroxy group can be distinguished based on the soft X-ray absorption spectra.

6.
Case Rep Oncol ; 16(1): 1054-1059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900802

RESUMO

Most elderly patients with tuberculosis (TB) have previously been infected with Mycobacterium tuberculosis, which remains dormant in the body for decades and may reactivate when their immunity declines due to underlying diseases. Elderly cancer patients are at a high risk for TB, and the treatment of TB reactivation in these patients is challenging. Among cancer patients, the incidence of TB reactivation is the highest in lymphoma patients. However, the impact of chemotherapy on TB reactivation in lymphoma patients is unknown. We report the case of an immunocompetent elderly patient with primary central nervous system lymphoma (PCNSL) having no prior history of TB, who developed miliary TB during multiagent chemotherapy consisting of rituximab, high-dose methotrexate, procarbazine, and vincristine (R-MPV therapy). Retrospectively, the chest computed tomography showed calcification of the pleura, suggesting that the patient had a latent tuberculosis infection (LTBI) and developed miliary TB from the reactivation of TB triggered by the R-MPV therapy. Our case emphasizes that when chemotherapy is administered to patients with PCNSL, interferon-gamma release assay (IGRA) should be performed if there are findings on chest examination suggestive of LTBI, such as pleural calcification, and if IGRA is positive, chemotherapy should be given concurrently with LTBI treatment.

7.
iScience ; 26(10): 108010, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37829206

RESUMO

Astrocytes interact with not only synapses but also brain blood vessels through perivascular astrocyte endfeet (PV-AEF) to form the neurovascular unit (NVU). However, PV-AEF components have not been fully identified. Here, we biochemically isolated blood vessels from mouse brain homogenates and purified PV-AEF. The purified PV-AEF were observed in different sizes, similar to PV-AEF on brain blood vessels. Mass spectrometry analysis identified 9,762 proteins in the purified PV-AEF, including cell adhesion molecules, nectin-2δ, Kirrel2, and podoplanin. Immunofluorescence microscopic analysis revealed that nectin-2δ and podoplanin were concentrated mainly in arteries/arterioles and veins/venules of the mouse brain, whereas Kirrel2 was mainly in arteries/arterioles. Nectin-2α/δ, Kirrel2, and podoplanin were preferentially observed in large sizes of the purified PV-AEF. Furthermore, Kirrel2 potentially has cell adhesion activity of cultured astrocytes. Collectively, these results indicate that PV-AEF have heterogeneity in sizes and molecular components, implying different roles of PV-AEF in NVU function depending on vascular regions.

8.
Anal Chem ; 95(38): 14502-14510, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37703188

RESUMO

We developed a novel purification medium of extracellular vesicles (EVs) by constructing a spongy-like monolithic polymer kneaded with TiO2 microparticles (TiO2-hybridized spongy monolith, TiO2-SPM). TiO2-SPM was applied in a solid-phase extraction format and enabled simple, rapid, and highly efficient purification of EVs. This is due to the high permeability caused by the continuous large flow-through pores of the monolithic skeleton (median pore size; 5.21 µm) and the specific interaction of embedded TiO2 with phospholipids of the lipid bilayers. Our method also excels in efficiency and comprehensiveness, collecting small EVs (SEVs) from the same volume of a cell culture medium 130.7 times more than typical ultracentrifugation and 4.3 times more than affinity purification targeting surface phosphatidylserine by magnetic beads. The purification method was completed within 1 h with simple operations and was directly applied to serum SEVs. Finally, we demonstrated flexibility toward the shape and size of our method by depleting EVs from fetal bovine serum (FBS), which is a necessary process to prevent contamination of culture cell-derived EVs with exogenous FBS-derived EVs. Our method will eliminate the tedious and difficult purification processes of EVs, providing a universal purification platform for EV-based drug discovery and pathological diagnosis.


Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , Bandagens , Polímeros
9.
Exp Cell Res ; 432(1): 113783, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726045

RESUMO

Cytokinesis is the final step of the cell division in which cellular components are separated into two daughter cells. This process is regulated through the phosphorylation of different classes of proteins by serine/threonine (Ser/Thr) kinases such as Aurora B and Polo-like kinase 1 (PLK1). Conversely, the role of phosphorylation at tyrosine residues during cytokinesis has not been studied in detail yet. In this study, we performed a phosphotyrosine proteomic analysis of cells undergoing monopolar cytokinesis synchronized by using the Eg5 inhibitor (+)-S-trityl-l-cysteine (STLC) and the CDK1 inhibitor RO-3306. Phosphotyrosine proteomics gave 362 tyrosine-phosphorylated peptides. Western blot analysis of proteins revealed tyrosine phosphorylation in mitogen-activated protein kinase 14 (MAPK14), vimentin, ephrin type-A receptor 2 (EphA2), and myelin protein zero-like protein 1 (MPZL1) during monopolar cytokinesis. Additionally, we demonstrated that EphA2, a protein with unknown function during cytokinesis, is involved in cytokinesis. EphA2 knockdown accelerated epithelial cell transforming 2 (Ect2) knockdown-induced multinucleation, suggesting that EphA2 plays a role in cytokinesis in a particular situation. The list also included many proteins previously reported to play roles during cytokinesis. These results evidence that the identified phosphopeptides facilitate the identification of novel tyrosine phosphorylation signaling involved in regulating cytokinesis.


Assuntos
Citocinese , Proteômica , Humanos , Citocinese/fisiologia , Fosfotirosina , Células HeLa , Fosforilação , Fosfoproteínas , Peptídeos e Proteínas de Sinalização Intracelular
10.
Neuropathology ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641451

RESUMO

Neuropil-like islands (NIs) are a histologic hallmark of glioneuronal tumors with neuropil-like islands (GTNIs), but GTNIs are presently not considered a homogeneous entity. The essence of GTNI is likely its glial component, and NIs are now considered aberrant neuronal differentiation or metaplasia. The case we report herein is a 41-year-old woman who was synchronously affected by two brain tumors: one was a glioblastoma (glioblastoma multiforme, GBM), of isocitrate dehydrogenase (IDH)-wild type, with NIs in the left parietal lobe, and the other was histologically a composite gangliocytoma (GC)/anaplastic ganglioglioma (GG) with NIs in the right medial temporal lobe. While both tumors were genetically wild type for IDH, histone H3, and v-raf murine sarcoma viral oncogene homolog B1 (BRAF), the former tumor, but not the latter, was mutated for telomerase reverse transcriptase promoter gene (TERT). A recent systematic study using DNA methylation profiling and next-generation sequencing showed that anaplastic GG separate into other WHO tumor types, including IDH-wild-type GBM. It suggested a diagnostic scheme where an anaplastic GG is likely an IDH-wild-type GBM if it is a BRAF wild type, IDH wild type, and TERT promoter mutant tumor. The likely scenario in this patient is that the GBM results from the progression of GC/anaplastic GG due to the superimposed TERT promoter mutation and the propagation of newly generated GBM cells in the contralateral hemisphere. A systematic analysis using DNA methylation profiling and next-generation sequencing was not available in this study, but the common presence of NIs histologically noted in the two tumors could support this scenario. Although a sufficient volume of molecular and genetic testing is sine qua non for the accurate understanding of brain tumors, the importance of histologic observation cannot be overemphasized.

11.
Nat Commun ; 14(1): 4991, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591859

RESUMO

Activation of the KRAS oncogene is a source of replication stress, but how this stress is generated and how it is tolerated by cancer cells remain poorly understood. Here we show that induction of KRASG12V expression in untransformed cells triggers H3K27me3 and HP1-associated chromatin compaction in an RNA transcription dependent manner, resulting in replication fork slowing and cell death. Furthermore, elevated ATR expression is necessary and sufficient for tolerance of KRASG12V-induced replication stress to expand replication stress-tolerant cells (RSTCs). PrimPol is phosphorylated at Ser255, a potential Chk1 substrate site, under KRASG12V-induced replication stress and promotes repriming to maintain fork progression and cell survival in an ATR/Chk1-dependent manner. However, ssDNA gaps are generated at heterochromatin by PrimPol-dependent repriming, leading to genomic instability. These results reveal a role of ATR-PrimPol in enabling precancerous cells to survive KRAS-induced replication stress and expand clonally with accumulation of genomic instability.


Assuntos
Heterocromatina , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Cromatina , DNA Primase , DNA Polimerase Dirigida por DNA , Instabilidade Genômica , Heterocromatina/genética , Enzimas Multifuncionais , Proteínas Proto-Oncogênicas p21(ras)/genética
12.
Cell Rep ; 42(8): 112884, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516964

RESUMO

NUP98 and NUP214 form chimeric fusion proteins that assemble into phase-separated nuclear bodies containing CRM1, a nuclear export receptor. However, these nuclear bodies' function in controlling gene expression remains elusive. Here, we demonstrate that the nuclear bodies of NUP98::HOXA9 and SET::NUP214 promote the condensation of mixed lineage leukemia 1 (MLL1), a histone methyltransferase essential for the maintenance of HOX gene expression. These nuclear bodies are robustly associated with MLL1/CRM1 and co-localized on chromatin. Furthermore, whole-genome chromatin-conformation capture analysis reveals that NUP98::HOXA9 induces a drastic alteration in high-order genome structure at target regions concomitant with the generation of chromatin loops and/or rearrangement of topologically associating domains in a phase-separation-dependent manner. Collectively, these results show that the phase-separated nuclear bodies of nucleoporin fusion proteins can enhance the activation of target genes by promoting the condensation of MLL1/CRM1 and rearrangement of the 3D genome structure.


Assuntos
Leucemia , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Cromatina , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Corpos Nucleares
13.
Mol Omics ; 19(8): 624-639, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37232035

RESUMO

Colorectal cancer (CRC), a common malignant tumour of the gastrointestinal tract, is a life-threatening cancer worldwide. Mutations in KRAS and BRAF, the major driver mutation subtypes in CRC, activate the RAS pathway, contribute to tumorigenesis in CRC and are being investigated as potential therapeutic targets. Despite recent advances in clinical trials targeting KRASG12C or RAS downstream signalling molecules for KRAS-mutant CRC, there is a lack of effective therapeutic interventions. Therefore, understanding the unique molecular characteristics of KRAS-mutant CRC is essential for identifying molecular targets and developing novel therapeutic interventions. We obtained in-depth proteomics and phosphoproteomics quantitative data for over 7900 proteins and 38 700 phosphorylation sites in cells from 35 CRC cell lines and performed informatic analyses, including proteomics-based coexpression analysis and correlation analysis between phosphoproteomics data and cancer dependency scores of the corresponding phosphoproteins. Our results revealed novel dysregulated protein-protein associations enriched specifically in KRAS-mutant cells. Our phosphoproteomics analysis revealed activation of EPHA2 kinase and downstream tight junction signalling in KRAS-mutant cells. Furthermore, the results implicate the phosphorylation site Y378 in the tight junction protein PARD3 as a cancer vulnerability in KRAS-mutant cells. Together, our large-scale phosphoproteomics and proteomics data across 35 steady-state CRC cell lines represent a valuable resource for understanding the molecular characteristics of oncogenic mutations. Our approach to predicting cancer dependency from phosphoproteomics data identified the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Transdução de Sinais
14.
Anal Chem ; 95(24): 9304-9313, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37230938

RESUMO

Halogen bonding is a highly directional interaction and a potential tool in functional material design through self-assembly. Herein, we describe two fundamental supramolecular strategies to synthesize molecularly imprinted polymers (MIPs) with halogen bonding-based molecular recognition sites. In the first method, the size of the σ-hole was increased by aromatic fluorine substitution of the template molecule, enhancing the halogen bonding in the supramolecule. The second method involved sandwiching hydrogen atoms of a template molecule between iodo substituents, which suppressed competing hydrogen bonding and enabled multiple recognition patterns, improving the selectivity. The interaction mode between the functional monomer and the templates was elucidated by 1H NMR, 13C NMR, X-ray absorption spectroscopy, and computational simulation. Finally, we succeeded in the effective chromatographic separation of diiodobenzene isomers on the uniformly sized MIPs prepared by multi-step swelling and polymerization. The MIPs selectively recognized halogenated thyroid hormones via halogen bonding and could be applied to screening endocrine disruptors.

15.
Comput Struct Biotechnol J ; 21: 2172-2187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013003

RESUMO

Apatinib is known to be a highly selective vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor with anti-angiogenic and anti-tumor properties. In a phase III study, the objective response rate to apatinib was low. It remains unclear why the effectivity of apatinib varies among patients and what type of patients are candidates for the treatment. In this study, we investigated the anti-tumor efficacy of apatinib against 13 gastric cancer cell lines and found that it differed depending on the cell line. Using integrated wet and dry approaches, we showed that apatinib was a multi-kinase inhibitor of c-Kit, RAF1, VEGFR1, VEGFR2, and VEGFR3, predominantly inhibiting c-Kit. Notably, KATO-III, which was the most apatinib-sensitive among the gastric cancer cell lines investigated, was the only cell line expressing c-Kit, RAF1, VEGFR1, and VEGFR3 but not VEGFR2. Furthermore, we identified SNW1 as a molecule affected by apatinib that plays an important role in cell survival. Finally, we identified the molecular network related to SNW1 that was affected by treatment with apatinib. These results suggest that the mechanism of action of apatinib in KATO-III cells is independent of VEGFR2 and that the differential efficacy of apatinib was due to differences in expression patterns of receptor tyrosine kinases. Furthermore, our results suggest that the differential efficacy of apatinib in gastric cell lines may be attributed to SNW1 phosphorylation levels at a steady state. These findings contribute to a deeper understanding of the mechanism of action of apatinib in gastric cancer cells.

16.
Cancer Med ; 12(9): 10755-10767, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004157

RESUMO

INTRODUCTION: Lung adenocarcinoma progresses stepwise from atypical adenomatous hyperplasia to adenocarcinoma in situ (AIS), followed by minimally invasive adenocarcinoma (MIA), and then obvious invasive adenocarcinoma. In this study, we examined the protein expression profiles of early and epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinomas. METHODS: Fifteen cases of small and EGFR mutation-positive adenocarcinomas were collected, including AIS, MIA, and small invasive adenocarcinoma (SIA). We examined their protein expression profiles by tandem mass tag (TMT)-labeling liquid chromatography-mass spectrometry (LC-MS/MS) and compared the results between AIS and MIA versus SIA. The differentially expressed proteins were then verified by Western blot analysis and immunohistochemistry (IHC). The clinicopathological implications of the proteins were also examined by IHC. RESULTS: A total of 4220 proteins were identified by LC-MS/MS analysis. Pathway analysis of the differentially expressed proteins revealed that pathways related to interferon α/ß signaling, glutamate and glutamine metabolism, and gluconeogenesis were upregulated in SIA relative to AIS. Among the 13 differentially expressed proteins, cellular retinoic acid binding protein 2 (CRABP2), delta(24)-sterol reductase (DHCR24), and adenylate kinase 4 (AK4) were expressed significantly more strongly in SIA than in AIS. Patients with high expression of CRABP2, DHCR24, and AK4 showed a significantly poorer outcome than those with low expression. CONCLUSION: In comparison with AIS, SIA shows differences in several different protein expression pathways. Furthermore, CRABP2, DHCR24, and AK4 are useful IHC markers for diagnosis of lung adenocarcinoma invasiveness and may be associated with malignant progression of AIS.


Assuntos
Adenocarcinoma in Situ , Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma/patologia , Adenocarcinoma in Situ/genética , Adenocarcinoma in Situ/patologia , Receptores ErbB/genética , Mutação
17.
J Chem Phys ; 158(10): 104201, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922146

RESUMO

Operando time-resolved soft x-ray absorption spectroscopy (TR-SXAS) is an effective method to reveal the photochemical processes of metal complexes in solutions. In this study, we have developed the TR-SXAS measurement system for observing various photochemical reactions in solutions by the combination of laser pump pulses with soft x-ray probe pulses from the synchrotron radiation. For the evaluation of the developed TR-SXAS system, we have measured nitrogen K-edge x-ray absorption spectroscopy (XAS) spectra of aqueous iron phenanthroline solutions during a photoinduced spin transition process. The decay process of the high spin state to the low spin state in the iron complex has been obtained from the ligand side by N K-edge XAS, and the time constant is close to that obtained from the central metal side by time-resolved Fe K-edge XAS in the previous studies.

18.
Childs Nerv Syst ; 39(4): 901-907, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36745216

RESUMO

PURPOSE: Measuring serum and cerebrospinal fluid human chorionic gonadotropin (hCG) is essential for the diagnosis of intracranial germ cell tumors. There are three types of hCG-related markers in clinical use: hCGß, intact hCG, and total hCG. The best marker for the diagnosis of intracranial germ cell tumors, especially germinoma, is currently unknown. This study aimed to evaluate the usefulness of these hCG-related markers. METHODS: We investigated 19 serum samples obtained from 6 patients with histologically diagnosed germinoma treated in our institute. Serum hCGß, intact hCG, and total hCG values were measured before, during, and after treatment. Samples with hCG values above the lower limits were considered positive. RESULTS: The positivity rates of serum hCGß, intact hCG, and total hCG were 6% (1/17), 47% (7/15), and 42% (8/19), respectively, with the latter two having significantly higher positivity rates than hCGß (p = 0.041). Both intact and total hCGs showed similar values. The median values of hCGß, intact hCG, and total hCG before treatment were 0.1 ng/mL, 4.6 mIU/mL, and 4.5 mIU/mL, respectively. CONCLUSION: Serum intact and total hCGs have higher detection rates than hCGß in patients with germinoma using available commercial measurement tools.


Assuntos
Neoplasias Encefálicas , Germinoma , Humanos , Biomarcadores Tumorais , Relevância Clínica , Gonadotropina Coriônica/líquido cefalorraquidiano , Gonadotropina Coriônica Humana Subunidade beta/líquido cefalorraquidiano , Germinoma/diagnóstico , Neoplasias Encefálicas/diagnóstico
19.
Anticancer Res ; 43(2): 569-580, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36697085

RESUMO

BACKGROUND/AIM: Itraconazole (ITZ), an antifungal agent, has been reported to have anti-tumor effects in patients with multiple cancer types. We investigated the involvement of tumor-associated macrophages (TAMs) in its tumor-agnostic mechanism. MATERIALS AND METHODS: M1 and M2 macrophages were established from human monocyte leukemia cell line (THP-1) and their phenotypes were determined morphologically. Cell membrane antigens and secreted proteins were evaluated by western blots and enzyme-linked immunosorbent assay, respectively. The proteomic profiling of cells was done by liquid chromatography with tandem mass spectrometry and analyzed. Viability of cervical cancer cells (CaSki) was evaluated after addition of the supernatant of M2 macrophages and during co-culture with M2 macrophages, with or without 10-5 M ITZ. RESULTS: Co-culture of M1 macrophages inhibited the proliferation of CaSki cells (p=0.012), while that of M2 macrophages promoted their proliferation (p<0.0001). After treatment of M2 macrophages with ITZ for 24 h, they changed into M1-like shape with decreased expression of cluster of differentiation 163 (CD163) and chemokine ligand 18 (CCL18). The M1-like shape was maintained for 7 weeks of ITZ treatment and reverted to original after ITZ removal. Proteomic analysis of ITZ treated-M2 macrophages also demonstrated M1-like signature including the elevated levels of tumor necrosis factor (TNF)-related proteins. After treatment with ITZ, both the supernatant of the M2 macrophages and the co-culture with M2 macrophages significantly inhibited the proliferation of CaSki cells (each, p<0.0001). CONCLUSION: ITZ repolarized M2 macrophages to M1 type and suppressed cervical cancer cell growth demonstrating TAM-mediated anti-cancer activity of ITZ.


Assuntos
Macrófagos Associados a Tumor , Neoplasias do Colo do Útero , Feminino , Humanos , Itraconazol/farmacologia , Neoplasias do Colo do Útero/patologia , Proteômica , Macrófagos/metabolismo , Linhagem Celular Tumoral , Diferenciação Celular
20.
Cancer Med ; 12(6): 7616-7626, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36394150

RESUMO

PURPOSE: The pathogenesis of cancers depends on the molecular background of each individual patient. Therefore, verifying as many biomarkers as possible and clarifying their relationships with each disease status would be very valuable. We performed a large-scale targeted proteomics analysis of plasma extracellular vesicles (EVs) that may affect tumor progression and/or therapeutic resistance. EXPERIMENTAL DESIGN: Plasma EVs from 59 were collected patients with colorectal cancer (CRC) and 59 healthy controls (HC) in cohort 1, and 150 patients with CRC in cohort 2 for the large-scale targeted proteomics analysis of 457 proteins as candidate CRC markers. The Mann-Whitney-Wilcoxon test and random forest model were applied in cohort 1 to select promising markers. Consensus clustering was applied to classify patients with CRC in cohort 2. The Kaplan-Meier method and Cox regression analysis were performed to identify potential molecular factors contributing to the overall survival (OS) of patients. RESULTS: In the analysis of cohort 1, 99 proteins were associated with CRC. The analysis of cohort 2 revealed two clusters showing significant differences in OS (p = 0.017). Twelve proteins, including alpha-1-acid glycoprotein 1 (ORM1), were suggested to be associated with the identified CRC subtypes, and ORM1 was shown to significantly contribute to OS, suggesting that ORM1 might be one of the factors closely related to the OS. CONCLUSIONS: The study identified two novel subtypes of CRC, which exhibit differences in OS, as well as important biomarker proteins that are closely related to the identified subtypes. Liquid biopsy assessment with targeted proteomics analysis was proposed to be crucial for predicting the CRC prognosis.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Humanos , Biomarcadores Tumorais/metabolismo , Proteômica/métodos , Prognóstico , Vesículas Extracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...